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Abstract—This paper introduces a GPU acceleration of a
Wavelet-based Algebraic Multigrid used as preconditioner for
solving the Laplace’s equation discretized by Finite Element
Method. We conduct some tests using a CPU-based direct solver,
a CPU-based Preconditined Conjugate Gradient (PCG), and a
GPU-based PCG. Finally, we report the solution time and the
speed-up achieved in solving the discretized problem.

I. INTRODUCTION

Multigrid Method (MG) is a well-known numerical tech-
nique for solving large sparse linear systems of equations [1].
Generally, the Laplace’s equation is expressed as a Partial
Differential Equation (PDE), and its discretization leads to a
sparse linear system of equations. Then, a hierarchy of meshes
is formed and used to solve the original problem. In the
Algebraic Multigrid (AMG), instead of forming a hierarchy
of meshes, the discretized (sparse) matrix is used to build
a hierarchy of matrices. In this, mesh (geometry) informa-
tion is not required, as the technique is entirely algebraic.
AMG methods have been proved to be efficient in different
applications, especially in solving problems that arise from
unstructred meshes. AMG methods have been used as an
efficient preconditioner for iterative solvers such as Conjugate
Gradient (CG) or Generalized Minimal Residual (GMRES).
Therefore, even though these methods are usually recognized
as a black box solver, some attention must be devoted in
choosing appropriately the operators which will create the
matrices hierarchy (restrictor, and prolongator operators). In
[2], the use of a Discrete Wavelet Transform (DWT) was pro-
posed to interpolate between different levels of the hierarchy
matrices. This scheme is generally known as Wavelet-based
AMG (WAMG), and its use allows us to efficiently parallelize
the solution of the discretized PDE.

An other disadvantage of traditional AMG methods is that
they require the inspection of the whole system matrix to
determine certain weight factors [1]. If the system matrix
is stored across different computing nodes, this requires a
certain amount of inter communication. WAMG methods do
not require this inspection, and the resulting communication
between different parallel execution units. In other words,
WAMG methods are ideal candidates for the implementation
on Graphic Processing Units (GPUs), thanks to their good
parallelization properties.

In this work we consider the solution of the Laplace’s
equation solved with the Finite Element Method (FEM) using

piece-wise constant basis functions. We study the acceleration
of a GPU-based WAMG using a biomedical test case, where
electric fields applied to the body through electrodes need to
be computed in the volume of the body. Here we extend the
work proposed in [3] providing a GPU acceleration for AMG
methods.

Firstly, we set the notation (Sec. II) and we introduce the
WAMG for solving the Laplace’equation. Finally, we show
some results in terms of speeding up the solution of the system
when GPUs are used (Sec. III-A).

II. FORMULATION

Consider the situation in which the electric field is assumed
conservative and the conduction currents dominant with re-
spect to the displacement currents. This condition leads to the
following PDE:

∇ · σ∇u = 0 on Ω (1)

where σ is the conductivity or admittivity of the body to
be imaged, u is the electric potential, and Ω the body to
be imaged. Electrodes are commonly modeled with some
boundary conditions [4], resulting in the following boundary
condition for each portion of the boundary ∂Ω` underneath
electrode `: ∫

∂Ω`

σ
∂u

∂n
= I` ` = 1 . . .L (2)

where I` is the current injected at electrode ` and L is the
number of electrodes.

Equations (1) to (2) together with a set of boundary con-
ditions allow to compute the electrode voltages V` for any
given conductivity distribution σ, and usually are solved with
the Finite Element Method. The resulting system of linear
equations is represented in a matrix fashion as follow:

Ax = b (3)

where the matrix A is weakly diagonal dominant (M-matrix)
[1], and b is the right-hand side.

III. WAVELET-BASED AMG ON GPU

In the framework of AMG methods, the solution of the
system matrix in eq. 3 is obtained iteratively. Indeed, only
one direct solution is performed at the last level (coarsest



Fig. 1. CG with WAMG (dark), and with diagonal preconditioner (red).
The desired tolerance of 10−9 is not reached within 300 iterations when the
WAMG is not employed.

mesh) of the formed hierarchy, and then the errors, between
different levels are updated. To do that, two operators are
needed. The first is the so-called restrictor, which is used to
build a matrix on a coarser level starting from a fine one;
and the second is the prolongator, whose operates conversely.
For WAMG these operators are derived from the DWT without
need of inspecting the system matrix. We note that the previous
scheme is known as V-cycle algorithm [1], and it is used
to approximate the solution of the system in (3). In this
paper, the WAMG is employed as a preconditioner for the
CG iterative solver, preconditioned-CG (PCG). The restrictor
and prolongator operators are, at each step of the V-cycle,
computed on-the-fly; we use the second order Daubechies
wavelets [5].

To show the speed-ups achievable by means of the GPUs,
we run some tests using a direct solver. In [6] it is shown
that PARDISO [7] can be significantly faster than the iterative
methods proposed in literature. Therefore, direct solvers have
the inconvenience that they require more memory than iterative
solvers, as they need to store the factored matrix, and they lend
themselves less well to parallelization. In the following, the
direct solver (PARDISO) will run on CPU, while the WAMG
on GPU.

A. Results

In this section we discuss numerical results relative to the
acceleration of the solution of the system in eq. 3. We present
the solution time while a CPU-based multiple core server, and
a GPU computing server are used. The CPU-based system is
a Dell Power Edge 1955 Blade Server. The server is based
on two quad-core Xeon 5355 ”Clovertown” CPUs, with an
internal clock frequency of 2.66GHz and front-side bus speed
of 1.33GHz, 8 cores at 64-bit. The GPU-based system is a
NVIDIA Tesla S1070 server, which consists of four Tesla
GPUs. Each GPU has 240 cores (960 in total) with an internal
clock frequency of 1.5GHz. Windows 7 64-bit Enterprise
edition is installed on the host CPU. For the time being we
use only one of the four GPUs available.

At this stage we consider only real-valued problems. De-
velopment of complex-valued solver is under way. Also, the
discretization procedure of the physical problem is conducted
on different mesh density resorting in A matrix with different
size. The dimensions considered are 59,000; 146,000; 300,000;
and 500,000. We solve these four problems by using the
WAMG-PCG on GPU and PARDISO on CPU. Figure III-A
shows the number of iterations versus the relative residual of
the PCG when the WAMG is used (dark curve) and when only
a diagonal preconditioner is employed (red curve) for A with
size equal to 146,000. It is possible to observe that the number
of iteration required to get a desired tolerance (ε = 10−9) is
reached within 30 iterations by using WAMG.

Finally, in Table I we report the timing in solving the
systems, with different size, by using PARDISO and WAMG-
PCG. For both methods the tolerance is equal to ε = 10−9.

TABLE I
SOLUTION TIME FOR REAL-VALUED PROBLEMS: PARDISO (CPU,

MULTI-THREADS) VS WAMG (GPU).

Size matrix (K) PARDISO (sec) WAMG (sec) Speed-up
59 3.5 1.7 2.05
146 10.83 3.73 3
300 76.86 21 3.5
500 787 96 8.2

IV. CONCLUSIONS

In this work we present a sparse linear solver based on
WAMG, and we discuss its acceleration on GPUs. In partic-
ular, we report a significant speed-up in solving the system
matrix on GPU with respect to a direct solver on CPU. For a
test mesh with 500,000 unknowns a relative speed-up of almost
8 for real-valued problems has been obtained using only one
GPU. We leave for the forthcoming papers the acceleration of
system matrix by using all computational capabilities of the
NVIDIA S1070 (eg. all four GPUs).
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