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Abstract—This paper presents a full-wave, whole-system mo-
deling of Microwave Imaging Tomography (MWT) systems, to
be used as forward model in reconstruction (inverse) algorithms.
The full geometry including antennas and their ports is simulated
via a Finite Element Method (FEM) approach. A new technique
is used to compute the antenna operation in the system, which
provides a general method to enforce the excitation as a specific
modal distribution and to extract the voltage and current
from the employed antenna. We report results for a complete
Microwave Imaging (MWI) system with comparison between
measured and simulated data.

Index Terms—Breast cancer detection, microwave imaging,
finite element methods, monopole antennas, admittance matrix.

I. I NTRODUCTION

Microwave Imaging (MWI) has recently developed into a
promising technique for breast cancer detection. Electrical
permittivity and conductivity are known to differ between
benign and malignant breast tissues for a wide range of the
microwave spectrum [1]. The ability to non-invasively map
these properties is therefore desirable and constitutes a new
way of detecting cancer. Unlike radar based techniques, which
have been proposed in literature for piece-wise homogeneous
domains [2], tomographic approaches are suitable for recover-
ing the dielectric properties of a heterogeneous medium such
as the breast. Microwave tomography (MWT) is based on the
use of a number of antennas (e.g. 8 to 16), arranged on a
circle which surrounds the breast. One antenna is used for
emitting an electromagnetic (EM) wave, which propagates
through the breast, and the other antennas measure the received
field intensity and phase. The transmitting antenna number
is incrementally changed to provide measurement data from
all surrounding directions. This allows collection of a dataset
which contains information about the distribution of electrical
properties in the volume of the breast. Image reconstruction
is based on an inverse problem formulation, where a forward
model is fitted to the measurements. By acting on the distri-
bution of electrical properties in the model it is possible to fit
simulated measurements to real measurements, and to estimate
the true distribution of electrical properties. The model fitting
is formulated as a least squares problem, incorporating a
Tikhonov regularization ( [3]) since the inversion is ill-posed.
Ill posedeness is caused by the fact that in MWT fast spatial

distributions of conductivity and permittivity result in very
small variations in the measured data. This makes the recovery
of fine spatial details difficult since the relative featuresin the
data can be confounded with errors and noise.

In order to optimize image quality it is necessary, therefore,
to maximize instrumentation accuracy and reduce model errors
as much as possible. This allows matching synthetic and
measured data to the precision needed to distinguish small
but important data features that carry information of the finer
spatial details of the electrical property distribution.

In the present manuscript we discuss the development and
implementation of a novel forward model for MWT based on
the Edge Finite Element Method (Edge FEM). For its first
implementation we apply this model to a breast microwave
imaging system developed at Dartmouth College [4]. Although
the proposed modeling approach is general, it can be used for
other MWT systems. The forward problem is formulated with
a 3D curl-curl Helmholtz equation using zero order Whitney
forms [5] as edge elements. This formulation is generally
superior to traditional FEM formulations where field variables
are associated to nodes ( [6]). Edge FEM also compares
favorably to Finite Difference Time Domain (FTDT) methods
in terms of accuracy since FEM elements can be small near
antennas, where the electric field varies rapidly and where
small elements allow more accurate description of the antenna
geometry. Larger elements can be used in regions far from
the antennas, where the electric field varies more slowly. We
regard this as an important step forward in achieving improved
image quality and resolution in MWT compared to previous
FDTD or nodal FEM based ( [6]). In the present manuscript
we derive variational methods, similar to [7], [8], and for
describing antenna ports, associated excitations and received
signals, and discuss and implement optimal conditions at the
boundary of the imaging volume. Alternatively to the approach
proposed in [9], (which has been addressed as the most
complete work in modeling a tomographic MWI system by
[10]), we provide a more general formulation in the following
sections.

The manuscript is organized as follows: Section II describes
the design and hardware architecture of the MWT system.
Section III describes the model of the system and specific
details of Edge FEM implementation, methods for describing
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the excitations and received fields at the antennae ports, and
absorbing boundary conditions. In Section IV we present
experimental results, where several test cases are used to com-
pare real measurements from the MWT system to synthetic
values from the model. Finally, Section V summarizes this
presentation.

II. M ICROWAVE BREAST TOMOGRAPHY SYSTEM

In this section we describe the principal characteristics of
the MWT system. The breast imaging system [4] comprises
16 monopole antennas which are mounted circularly inside
a cylindrical Plexiglas tank, which is open at the top as
illustrated in Fig. 1(a). The function of the tank is to hold
a water/glycerin bath that presents a good impedance match
at the interface with the breast surface, minimizing reflections
of the propagating fields as they enter the body. The bath,
which has a conductivity of 0.5 to 2.0 S/m over the operating
frequency range (see Fig. 7 for more details on the bath
electrical properties), performs the function of sufficiently
attenuating the fields to eliminate the possibility of unwanted
multi-path signals. While the loss through the medium is high,
heterodyne receivers can measure signals down to -135 dBm
which is sufficient given the short propagation paths.

Figure 1(b) shows a view of the entire system, where
the tank and antennas are visible on the right part of the
photograph, and the electronics on the left. The diameter of
the tank is 28 cm and the height is 20 cm. Fig. 1(c) shows the
system with the bed on top. The patient lays prone on top of
the system, which is soft, and inserts her breast in the opening.
The breast will therefore be pendant beneath the level of the
table, and inside the circle of antennas.

The monopole antennas employed in the system have a
simple, omnidirectional design, and are formed by a rigid 50
Ω coaxial cable, 3.58 mm diameter, where the metallic shield
has been stripped for the last 3.4 cm from the top, effectively
allowing the core conductor to radiate, (Fig. 2). This antenna
exhibits a wideband behavior when fully immersed in the lossy
bath [11] (from 500 MHz up to 3000 MHz), and results in an
almost spherical radiation pattern which emanates from the
stripped part (see Fig. 9).

Fig. 2. Monopole antenna: coaxial cable with the outer metalconductor
stripped from the termination. The region free from the shield acts as an
active zone (transmitting zone), as it couples with the surrounding medium.

The system operates over the frequency range of 500 to
3000 MHz, and the electronics are custom designed com-
ponents and can detect signals down to -135 dBm. The
transmitted power for imaging is 5 mW or less.

Fig. 3. Meshed domain, cross-section:ΩPML is the region occupied by
PML; region Ω is the imaging domain; the fields emitted by the antennas
propagate through this region.

III. SYSTEM MODELING

The microwave tomography system can be described by
and N-port model, each port representing an antenna port,
as illustrated in Fig. 4. The system is operated by applying
an excitation to one port and by measuring responses at the
remaining ports. The measurements depend on the propagation
and scattering phenomena that occur inside the volume of
the tank, and are used to reconstruct the spatial distribution
of electrical conductivity and permittivity within the breast.
A single measurement consists of the sensing voltageVj ,
received at thejth antenna port, when a single frequency
excitation of Vi is applied to theith port. The objective of
this treatment is to develop a model that links the MWT
measurements to the spatial distribution of electrical properties
inside the tank’s volume, so that through an inverse procedure
it might be possible to estimate them. For the purpose of
modeling we divide the cylindrical volume of the tank into
two concentric regions as illustrated in Fig. 3.

The inner region, regionΩ, is the actual discretized volume
inside the tank. This region is filled with the water/glycerin
bath, and includes the antenna array where the breast is
present during examinations, and where electrical properties
are estimated. The second region, (regionΩPML = ∪3

i=1Ωi in
Fig. 6), extends radially from the end of regionΩ, to the walls
of the tank. This region is used for modeling the progressive
attenuation of the fields, which for any practical purpose are
completely attenuated by the lossy bath before reaching the
tank walls. As discussed in Sec. III-B4, a Perfectly Matched
Layer will be implemented in this region, absorbing the fields
that propagate in it.

A. Numerical Formulation by the Edge Finite Element Method

For a single frequency excitation, the propagation and scat-
tering of electromagnetic waves inside the volume of the MWT
tank is described by the Maxwell’s equations. Disregardingthe
source terms for the moment:

∇× E = −jωµ · H (1)

∇× H = jωǫ ·E (2)

∇ · (ǫ ·E) = 0 (3)
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(a) Tank with antenna array. The tank is
usually filled with a coupling liquid. The
antennas are fully immersed in the liquid
bath.

(b) Inside the examination table for
MWI breast cancer detection: tank,
antenna array, and microwave compo-
nents.

(c) Examination table for MWI breast can-
cer detection at Dartmouth-Hitchcock Me-
dical Center.

Fig. 1. MWT system at Dartmouth Hitchcook Medical Center.

∇ · (µ ·H) = 0 (4)

whereǫ andµ are the diagonal permittivity and permeability

tensors with ǫ = ǫ0(ǫr − j
σ

ωǫ0
), and ǫ0 the free space

permittivity. By substituting (1) into (2), one can obtain the
“curl-curl” formulation [12] for the electric field, which is the
tensorial wave equation:

∇× [µ−1 · (∇× E)] − k2
0ǫ · E = 0 (5)

In solving (1)-(4) different choices regarding the basis func-
tions are available. Commonly, two kind of basis functions are
used: nodal or edge basis functions. The use of nodal basis
functions has been proposed for solving three-dimensional
vector field problems [6]. The derivatives of the basis func-
tions are not continuous and, if employed, the finite element
solutions can be nonphysical, as the divergences for both the
magnetic and electric field are not fulfilled (eqns. (3), and (4)).
To overcome this problem, Paulsen and Lynch [13] explicitly
enforced the divergence condition while scalar basis functions
were used. Therefore, to completely avoid spurious solutions, a
continuous derivative basis function is needed. More recently,
it is well understood that edge basis function (zero order
Whitney form, [5]), can solve the spurious modes problem for
time-harmonic electromagnetics. It should be also noted that
problems might occur for the electrostatic case (low-frequency
breakdown) but alternative formulations based on potentials
[14], for instance, can alleviate this numerical issue.

With regards to (5), we choose the edge basis functions,W,
and apply the Galerkin testing procedure in order to produce
a discretized version of the functional:

Mpq =

∫∫∫

V

(∇× Wp) · [µ]−1 · (∇× Wq)dV +

−k2
0

∫∫∫

V

Wp · [ǫr] · WqdV +

+jωµ0

∫∫∫

V

Wp · [σ] · WqdV

(6)

and

M · e = α (7)

Fig. 4. Schematic representation for a N-port network. The MWT system has
one transmitter and some receivers working at the same time.The transmitter
port is excited with a voltageV0 while the other are closed onZL.

whereMpq is the(p, q)th entry of the FEM matrix (M ), ǫr, σ
the relative permittivity and conductivity tensors respectively,
e the solution coefficients, andα in (7) the right-hand side
(RHS) which will be discussed in Section III-B2. The reader is
referred to [12] for the explicit expression of the basis function
W. The above discretized system (7) can therefore be used
to describe the propagation of electromagnetic fields inside
the MWT tank. Appropriate boundary conditions are applied
for describing the presence of antennas, the excitationsVi and
sensed voltagesVj at different ports, and the boundary of the
tank.

B. Antennas and Coaxial Ports Modeling

The MWT system utilizes 16 antennas, which interface
with the electronics through 3.5 mm SMA coaxial connectors.
Over the range of frequencies at which the system is operated
these connectors are unimodal, and operate in the Transverse
ElectroMagnetic (TEM) mode. Excitations and sensed volt-
agesVi and Vj represent, therefore, TEM modal voltages
at the antenna ports, and constitute the inputs and outputs
of the system. Considering the schematic diagram in Fig. 4,
the system can be modeled as a network withN ports at
which excitations can be applied or voltages sensed. In practice
appropriate boundary conditions are used in conjunction with
(6) to describe:
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• the presence of the metallic antennas in the volume of
the tank;

• the applied excitations;
• sensed voltages computed from the FEM solution of (7).

These boundary conditions are discussed in the next three
subsections.

1) Modeling Antennas:The MWT system uses monopole
antennas obtained by stripping out the last 3.4 cm of the exter-
nal shielding conductor of a rigid coaxial cable as illustrated
in Fig. 2. This exposes the dielectric and the core conductor
of the cable, and creates anactive part. The coaxial shield
and core, both metallic, are modeled as Perfectly Electric
Conductors (PEC) by enforcing a Dirichlet boundary condition
n̂ × E = 0 on all the mesh edges belonging to the surface of
these two components. The dielectric insulator of the coaxial
cable, which is exposed to the tank volume in the active part
(Fig.5(b), and Fig. 5(c)), is simply modeled as a sub-volume
with a known relative permittivityǫr = 2.2 and conductivity
σ = 0 S/m; these values are representative for Teflon.

Of particular importance in describing the coupling between
the antennas and the tank medium is the surface represented
by the cross section of the antennas (Γport) at the level where
the shield had been removed (Fig. 5(c)). Points below this
surface are inside the cavity of the coaxial shield supporting
the TEM mode while points above this surface are in the open
field of the tank. TheΓport surface is therefore the interface
between the modal TEM propagation and the free propagation
in the tank volume. In the following two next subsections we
discuss how boundary conditions are used for describing the
excitations and sensing voltages.

2) Modeling Port Excitations:Voltage excitations atΓport

of any antenna is described using Dirichlet boundary condi-
tions, and forcing the electric field distribution at that surface
to be equal to the TEM modal distribution. Voltage excitation
in the coax is enforced as a boundary condition for the electric
field via the modal distribution:

E
(i)
Γ = Vie

† (8)

whereVi the voltage between the inner and outer conductor of
the ith coaxial cable, as applied by the driving electronics,e

†

is the TEM modal eigenfuction, andE(i)
Γ is the forced field

at port Γ(i) of the ith antenna. The eigenfuctione† can be
expressed as [15]:

e
† = ρ̂

1√
2π · ln(b/a)

1

ρ
(9)

wherea andb are the inner and outer diameters of the coaxial
cable, andρ is the local radial coordinate.

A RHS vector α for the linear system (7) representing
the above Dirichlet conditions can be found by testing the
boundary condition on eachΓport surface. The electric field
can be expanded in terms of basis functionsW as:

E =
∑

m∈M

αmWm (10)

whereM is the set of edge indexes residing onΓport. Next,
Galerkin testing is applied to the excitation boundary condition
(8), yielding:

∑

m∈M

∫∫

Γport

Wm·EdΓ =
∑

m∈M

∑

n∈M

∫∫

Γport

αmWm·WndΓ

(11)
The above is a linear system of equations, which can be
expressed more explicitly:

∑

m∈M

∑

n∈M

αm〈Wm,Wn〉 = 〈Wm,E
(i)
Γ 〉 (12)

The solution of the above system of equations allows comput-
ing the RHSα representing the voltage excitationsVi at each
ith port, and is used to model the applied excitations.

3) Modeling Sensed Voltages at Antenna Ports:In the
MWT system all receiving antennas are closed on the matched
impedance of the sensing electronics, and the sensed voltages
are collected sequentially. As anticipated, the relation between
currents and voltages of the N-port network which represents
the system can be expressed using theY -matrix [16]:

I = Y · V (13)

Additionally, a second condition is used for describing the
source excitations and loading conditions:

V = −ZL · I + V si
(14)

whereZL = diag{ZL}L aN×N diagonal matrix with entries
equal to the loadZL, andV si

vector is expressed as follow:

V si
=




0
Vi

...
0


 (15)

where theith antenna is used as transmitter, and withVi =
V0 (Fig. 4) the applied voltage eventually scaled to a desired
power level. Substituting (14) into (13) and solving the system
(13) for V it is possible to express the voltage at each port
given the system excitation and loading conditions as:

V = Y
−1

· (I + Y · ZL)−1 · Y · V si
(16)

Knowledge of theY -matrix facilitates computation of the
received voltage at any port. In our approach we derive
the Y -matrix of the system first, except for excitations and
loading conditions, and then compute all the required voltages
described above. The general entry of the admittance matrix
is typically written as:

Ypq =
Ip

Vq

∣∣∣
Vk=0 k 6=q

(17)

where voltages, (18), and currents, (19), are defined as follows:

Vq =

∫∫
Γ

(q)
port

E
(q) · e†

∫∫
Γ

(q)
port

e† · e†
(18)
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(a) FEM mesh showing the bot-
tom plate of the imaging tank and
the antennas. The interior of the
tank, normally filled with a coupling
liquid, and the side walls are not
represented in this illustration, and
in order to show the antennas we
mesh only the internal conductor
(metallic core).

(b) Expanded view for
one monopole antenna:
Γport is the surface be-
tween the coaxial ca-
ble and the active part
(with the normal direc-
tion along the axis of the
coax).

(c) Representation of
the monopole antenna:
the arrow indicates the
Γport which is used to
enforce/sense the field
at the monopole an-
tenna.

Fig. 5. Monopole antenna: antenna array mesh, and zoom-in for a single transmitter in order to show theΓport surface. The mesh for the external (dielectric)
conductor is not shown in Fig.5(a), and 5(b) to better highlight the enforcing/sensing surface.

and

Ip =

∫∫
Γ

(p)
port

H
(q) · h†

∫∫
Γ

(p)
port

h† · h†
(19)

being E
(q) and H

(q) the electric and magnetic field at the
port when theqth transmitter is used, and(e† andh

†) are the
electric and magnetic TEM modal eigenfunctions [15].

In essence the definition of the generic element of the
Y -matrix, (17), indicates that this term can be obtained by
applying an excitationVq at the qth port, and by collecting
the voltageVp when all ports, with the exception of theqth
port, are closed on a short circuit. The current termIp involves
the magnetic field, which can be computed by differentiating
a forward solution as we solve for the electric field:

E(r) =

L∑

l=1

elWl(r) (20)

where{e}L
l=1 are the solution coefficients. Consequently, the

magnetic field can be obtained as follow:

H(r) = −
1

jω
[µ]−1

L∑

l=1

el∇× Wl(r) (21)

Knowledge ofVq and Ip allows for the computation of the
elementYpq of the Y -matrix. In general N forward solutions
with unit excitations at each antenna are required to build
the full Y -matrix and solve for the received voltages under
specified excitation and loading conditions using (16).

4) Absorbing Boundary Conditions:In the MWT system,
fields used for imaging, emitted by the antennas, are largely
attenuated before reaching the walls of the tank by the
presence of the lossy water/glycerin bath. From a numerical
point of view, these fields could reflect off the walls of
the tank, to generate spurious reflections. In order to ensure

Fig. 6. Cross section of the FEM model of the tank, showing thePML
regions. Three regions (Ω1, Ω2, Ω3) are selected to match the tank boundaries
and to attenuate the propagating waves.

that unwanted reflections are suppressed Absorbing Boundary
Conditions (ABC) are implemented. A suitable ABC condition
that offers high absorption over a wide range of frequencies
and for a generic incident angle is the perfectly matched layer
(PML) introduced by Berenger [17]. The PML conditions are
implemented using a layer of material withad-hocelectrical
properties that surrounds the imaging domain, illustratedin
Fig. 3 as regionΩPML = ∪3

i=1Ωi . The goal in using PML
layers is to:

• match the impedance at the interface between the layer
and the domain (interface between regionΩPML andΩ
in Fig. 3), so that the fields enter the PML region without
reflections.

• attenuate fields that travel thought the PML region, main-
taining a matched impedance condition, so that fields
eventually die out before reaching the boundary of the
numerical domain.
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The properties of PML materials can be designed to com-
pletely attenuate a wave incident on the PML layer along a set
direction. Waves incident from other directions are attenuated
by a factor that depends on the incidence angle: the closer this
angle is to the optimal, the higher is the attenuation. Given
that the PML has a preferential direction of attenuation, itis
common to use a number of layers to cover the boundary of
the domain, each optimized for the average direction of the
waves incident on that portion of boundary. In our case we use
three different layers: 1) a first layer is used on the side walls
of the domain (indicated asΩ1 in Fig. 6), this layer is designed
to offer maximum attenuation for waves propagating radially;
2) a second layer is used for the top of the tank (indicated as
Ω3 in Fig. 6), and is designed to offer maximum attenuation
for waves traveling vertically; 3) a third layer is used at the
corner between the side and top walls of the tank (indicated as
Ω2 in Fig. 6), and is designed to offer maximum attenuation
for waves that hit this layer at a 45 degrees angle.

To express the PML properties for waves propagating radi-
ally, it is convenient to use cylindrical coordinates. Equations
(1) - (4) are obtained by using the nabla operator [18] (for
cylindrical coordinates) and rewriting as:

∇̃ = ρ̂
1

sρ

∂

∂ρ̃
+ φ̂

1

ρ̃

∂

∂φ
+ ẑ

1

sz

∂

∂z
(22)

wheresρ, ρ̃, and sz are frequency independent terms called
complex stretching variables[19], [20]. When sρ = sz =
1, and ρ̃ = ρ the fields computed with the nabla operator
in (22) are the traditional Maxwell’s equations in cylindrical
coordinates. Following results in [21], the stretching variables
for the imaging domainΩ and the three PML regionsΩ1,2,3

can be set as follows:





sρ(ρ) = 1
ρ̃(ρ) = ρ ρ, z ∈ Ω
sz(z) = 1

(23)






sρ(ρ) = 1 − jα
(

ρ−ρ0

∆ρ

)2

ρ̃(ρ) = ρ − jα (ρ−ρ0)3

3∆ρ2 ρ, z ∈ Ω1

sz(z) = 1

(24)





sρ(ρ) = 1 − jα
(

ρ−ρ0

∆ρ

)2

ρ̃(ρ) = ρ − jα (ρ−ρ0)3

3∆ρ2 ρ, z ∈ Ω2

sz(z) = 1 − jβ
(

z−z0

∆z

)
(25)





sρ(ρ) = 1
ρ̃(ρ) = 1 ρ, z ∈ Ω3

sz(z) = 1 − jβ
(

z−z0

∆z

)2
(26)

where α and β two real-valued parameters that take into
account the contrast at the interface betweenΩ and ΩPML,
and the attenuation of the waves propagating throughΩPML.
In this manuscript we have chosenα = β = 6 as suggested
by [22]. The above stretching variables guarantee the desired
attenuation of the fields incident on the PML layers, and can
be translated in the dielectric properties of the generic medium
in regionsΩ, Ω1, Ω2, Ω3 by using the following tensors:

ǫ = ǫΛ µ = µΛ (27)

whereǫ = ǫ0(ǫr − j σ
wǫ0

), µ = µ0µr, andΛ is expressed as:

Λ = ρ̂ρ̂

(
ρ̃

ρ

) (
sz

sρ

)
+φ̂φ̂

(
ρ

ρ̃

)
(szsρ)+ẑẑ

(
ρ̃

ρ

) (
sρ

sz

)
(28)

Translating the PML conditions in matrical properties allows
handling these conditions without substantial modifications to
the base FEM implementation. Each tetrahedral element in a
PML region for local tensorΛ, depending on the location of
the element, is computed. As the FEM system (7) is expressed
in Cartesian coordinates, the tensor is expressed in this system
using a transformation matrix defined as follow:

J =




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 (29)

where θ is the azimuthal angle computed with respect to
the mid-point of the tetrahedral mesh element. The tensor in
Cartesian coordinates is then obtained asΛ

[x,y,z]
= JT ·Λ ·J .

The material properties of the tetrahedral element can be
expressed as:

ǫ = ǫΛ
[x,y,z]

µ = µΛ
[x,y,z]

(30)

Finally, we close the exterior surface of the numerical
domain with a PEC condition (n̂×E = 0). As the propagating
fields are attenuated by the PML, this condition results in no
reflections.

IV. RESULTS

The edge-based FEM proposed in the preceding sections
was used to develop a model for the Dartmouth MWT system
[4]. In the present section we report firstly results from
numerical simulations which have been used as a preliminary
validation of the model. Secondly the model is compared
against a set of experimental results, showing a good matching
between model predicted measurements and actual measure-
ments.

As mentioned in Section II, in the normal operation of the
MWT system the tank is filled with a coupling liquid in order
to reduced unwanted reflections at the air/skin interface with
the breast. A possible choice for such a liquid is a mixture of
glycerin and water. In order to reproduce the same working
conditions we used a 80:20 glycerin-water bath to fill the
tank and completely submerge the antennas (Fig. 7 shows the
dielectric properties of two liquids). All the receiving antennas
are terminated with a resistive load ofZL = 50Ω (Fig. 4), and
here we also note that the antennas must be fully immersed
to work properly.

The MWT system is is modelled with a 3-D FEM tetrahe-
dral mesh produced with Netgen mesh generator [23], [24].
For all results here reported we employ a Dell Optiplex PC,
Windows 7, 64-bit, with Intel i7-2600 CPU at 3.40 GHz,
and 16 GB of memory. With regards to the solution of the
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(a) Relative permittivity for liquids used as bath and
scatterer.

(b) Conductivity (S/m) for liquids used as bath and
scatterer.

Fig. 7. Dielectric properties for 80:20 and 50:50 glycerin-water from 100 MHz up to 3000 MHz. The 50:50 glycerin-water mixture is used to simulate a
scatterer due to the differences (contrast) in the considered dielectric properties, while we use the 80:20 mixture as coupling liquid.

discretized system of matrix equations, we use a multi-frontal
PARDISO solver [25].

Along with the numerical simulations (Section IV-A), we
conducted two experiments at 900 and 1900 MHz. In the first
experiment, Section IV-B, we consider only the tank with the
coupling liquid at 900 MHz. Then, we place a scatterer and we
run two experiments: Section IV-C at 900 MHz, and Section
IV-D at 1900 MHz.

A. Numerical experiment

In this section we report results from numerical simulations
by analyzing the fields radiated from one transmitter of the
physical MWT system. We applied the formulation proposed
in Section III-A jointly with the novel procedures presented
in Section III-B2 to enforce a modal voltage distribution.

In this numerical test, we simulate a working scenario with
a scatterer placed inside the imaging domain. We chose a 3 cm
diameter plexiglass cylinder extending the full height of the
tank. Figure 11(a) depicts a schematic representation of the
experiment, and 11(b) shows a top-view of the tank with the
dielectric cylinder inside. To mimic the presence of a scatterer
inside the tank we used a plexiglass cylinder placed as in
Fig.11(a), and with a 50:50 glycerin-water mixture. Using a
different concentration of this liquid allows us to represent
a scatterer with different electrical properties as depicted in
Fig.7. At f=1900 MHz the dielectric properties of the liquid
bath areǫrbk

= 18.22, σbk = 1.66 S/m while those for the
scatterer areǫrsc

= 54.23, σsc = 1.92 S/m. In the following
we considerNTX = 16 antennas. For theith transmitter a
unique set ofNRX = NTX − 1 receivers is available. Thus,
for NTX transmitters we collectM = NTX×(NTX−1) data,
M = 240 samples. We note that the measurement quantity
is the voltage associated with each antenna, and that the
simulated amplitude of the received voltages for the closest
transmit-receive configurations have been eliminated due to
saturation of the receivers.

The tank with all the antennas, and the scatterer placed
inside are discretized with edge-based FEM yielding 2,563,313
tetrahedra (3,145,794 unknowns). With regard to the sparse

FEM matrix assembling phase, we code some C/C++ func-
tions; these functions have been optimized taking into account
assembling time and memory occupancy.

The solution time for the discretized system of matrix equa-
tion (7) (using PARDISO) is roughly 4 hours for allNTX = 16
transmitters. The reader should notice that this may not the
most efficient solver for such a kind of problem. Using an
iterative method with an appropriate preconditioner technique
might result in a faster solution. For this complex Helmholtz
problem, the Domain Decomposition Method (DDM) seems
to be a suitable candidate for solving large system matrices
arising from FEM discretization [26]–[28]. We note that the
development of a DDM preconditioner is currently under way,
and that preliminary results can be found in [29].

Fig. 8 shows normalized z-component of the electric field
magnitude and phase. First, the information carried by the
phase is crucial because by visual examination, it is possible to
infer the position of the scatterer. Next, we tested the employed
PML: for proper operation, phase continuity must be preserved
across the PML-layer [17]. From Fig. 8(b) it is clear that the
emitted wave is propagating from the transmitter through the
discretized tank without reflections.

It was demonstrated in [11] that the monopole radiation
in a lossy bath exhibits a pattern very close to spherical-
like radiation. Given that the antenna lacks a symmetrizer
(balun), one would expect a significant current on the outer
surface of the feeding coaxial line (Sommerfeld-Goubau wave
[30]). However, due to large damping of the lossy medium the
radiated field actually remains nearly spherical with the phase
center located approximately at the middle of the active part
of the monopole. In order to closely verify this conjecture,we
employed our numerical solution; the most relevant assessment
is carried out through analyzing the real part of the Poynting
vectorS:

S =
1

2
E× H

∗ (31)

Fig. 9 shows the normalized real part of the Poynting vectorS

at f=1900 MHz in a cross section including the transmitter and
the opposite receiver. It can be seen that while the perturbation
of the unbalancing is evident close to the coaxial-monopole
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(a) Magnitude ofEz component on multiple
slices.

(b) Phase forEz component. The position of the scat-
terer is clearly observed due to the phase distortion.

Fig. 8. Simulation experiment: electric field (Ez).

transition, the disturbance diminishes away quickly from the
Γport.

Fig. 9. Normalized real part of Poynting vectorS at f=1900 MHz showing
the energy deposition of the selected monopole antenna.

B. Experiment 1

In the MWT system, the array of antennas is able to move
up and down utilizing linear actuator motors yielding multiple
in-plane and cross-plane data acquisitions. For this analysis
we acquired data only from one plane at the distance of 4 cm
from the top of the tank.

In this experiment we tested the ability of accurately re-
produce the measurements in the absence of scatterers; the
tank was filled with a uniform glycerin-water 80:20 percent
solution (coupling liquid).

The complete MWT system was discretized at f=900 MHz
with 1,807,965 tetrahedra and 2,234,380 unknowns; the solu-
tion time for the system of sparse linear equations resulting
from FEM disctretization is roughly 1 hour. The relative
permittivity and conductivity of the background bath at 900
MHz are ǫrbk

= 28.9, and σbk = 0.96 S/m, respectively.
Fig. 10 depicts the measured and simulated voltage for all
transmitter/receiver pair, and shows strong agreement between
simulations and measurements. We note that the magnitude of

measured and simulated voltages for all transmitter/receiver
pair agree better than 2.3648 dBm.

Fig. 10. Experiment 1: magnitude of measured and simulated voltage for
240 different excitations and sensing configurations resulting from rotating
the excitation and the sensing antennas. At this level of magnification the
simulated and measured fields completely superimpose, as they are matching
closely. Other figures show magnified views, where it is possible to appreciate
discrepancies between simulations and synthetic data.

C. Experiment 2

In this experiment we simulate the tank with an inclusion.
Geometrical information about position and size of the scat-
terer can be found in Section IV-A. The dielectric properties of
the liquid bath at 900 MHz areǫrbk

= 28.9, σbk = 0.96 S/m
while those for the scatterer areǫrsc

= 60.48, σsc = 0.52 S/m.
The discretized MWT system consists of 2,223,753 tetrahedra
with 2,705,568 unknowns; the matrix system (7) was solved
in 4140 sec.

Fig. 12 shows magnitude and phase for 6 transmitters and
relative receiver antenna positions (M = 90). We see that the
magnitude of measured and simulated voltages agree better
than 1.9907 dBm, while the phase agrees better than 14◦. To
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(a) A cylindrical scatterer is placed inside the tank at the position represented
the dark circle.

(b) Top view of tank with the scatterer.

Fig. 11. Experiment 2: representation of the setup and picture of the experiment.

quantify the accuracy of the simulations and compare them
with the measurements, we consider the average error per data
point defined as follow:

Err =
‖V

meas
− V

sim
‖

M
(32)

ConsideringM = 240 (all TX/RX pairs), in this experiment
Err is 1.36%; this demonstrates that we were able to predict
the magnitude and phase measurements when a scatterer is
placed inside the tank.

Fig. 12. Experiment 2: dielectric cylinder inside tank. TX-RX configurations
for 6 transmitters resulting inM = 90 data points; a) magnitude and b) phase
of measured and simulated received voltages. At this level of magnification the
simulated and measured fields completely superimpose, as they are matching
closely.

D. Experiment 3

With regard to the experiment presented in Section IV-A, we
compared measured and simulated data in order to demonstrate
that our model is able to predict the measurements even at a
relatively high frequency, 1900 MHz. The dielectric properties
of the liquid bath areǫrbk

= 18.22, σbk = 1.66 S/m while
those for the scatterer areǫrsc

= 54.23, σsc = 1.92 S/m. The
position and size of the inclusion are shown in Fig. 11(a). The

discretization procedure produces 2,563,313 tetrahedra which
corresponds to 3,145,794 unknowns. We show in Fig. 13 the
comparison of measurements and simulations at f=1900 MHz.

Fig. 13. Experiment 3: magnitude a) and phase b) of measured and simulated
voltage for 6 transmitters (and relative receivers) at f=1900 MHz. At this level
of magnification the simulated and measured fields completely superimpose,
as they are matching closely.

To allow for a closer comparison, we select one of the
employed 16 monopole antennas, and we show the magnitude
and phase results separately for the relative receivers in Fig 14.
According to Fig. 14 small discrepancies (6 dBm) occur for
the magnitude voltage of the relative receiver number 7, and
8, while the phase error between measures and simulations
is roughly 40◦at the lower level of this extremely wide
dynamic range. The average error per data point (Err) is0.9%
(M = 240 in (32)).

V. CONCLUSIONS

An accurate forward model is a necessary starting point
for inverse scattering algorithms. In particular, the modeling
should be able to accurately predict the quantities that are
actually measured in a real-life system. To this end, we have
proposed and validated a whole-system full-wave modeling
method for microwave tomography based on the Edge Finite
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Fig. 14. Experiment 3: magnitude and phase for measured and simulated
voltage for the selected transmitter. These graphs, representing magnitude and
phase of the simulated and experimental measurements, havebeen expanded
to show this data in grater detail. As it is possible to notice, a very close
agreement is found between simulated and measured data.

Element Method. The approach considers the full material and
geometric properties of the system, uses the actual excitation
at antenna ports, and renders the measured received signals
with specified loading terminations without approximations or
simplifying assumptions. This is obtained by characterizing
the generic microwave imaging system as an N-port structure
via its admittance matrix, whose entries carry all the infor-
mation on the content of the region of interest. This allows a
straightforward inclusion of port excitation and terminations
which is made possible by a specialized, rigorous field-based
description of the port boundary conditions employing a modal
representation of the field in the connecting coaxial lines.Ex-
perimental tests have been conducted showing good agreement
between measured and simulated data, and the numerical tool
has also proven useful in understanding the wave physics of
tomographic equipment.
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